

Subject: Internship Proposal

<i>ID</i>	PTI_EN_Ravì Daniele_10/02/2026 10.30.01
<i>Data</i>	10/02/2026 10.30.01

Project Supervisor

<i>Surname</i>	Ravì
<i>Name</i>	Daniele
<i>Department</i>	MIFT
<i>Laboratory</i>	512
<i>E-mail</i>	dravi@unime.it
<i>Phone number</i>	3717605146

Project Co-Supervisor

<i>Surname</i>	Lonia
<i>Name</i>	Giovanni
<i>Job Position</i>	PhD
<i>Department</i>	MIFT

<i>Laboratory</i>	512
<i>E-mail</i>	giovanni.ionia@unime.it
<i>Phone number</i>	

Project details

<i>Title</i>	Efficient Processing of Hyperspectral Imaging using AI
<p><i>Detailed description:</i> Hyperspectral imaging (HSI) captures information across hundreds of spectral bands, enabling fine-grained material and tissues identification and analysis in domains such as precision agriculture, environmental monitoring, cultural heritage diagnostics, and medical/biomedical imaging. However, HSI data is high-dimensional and computationally expensive to store, preprocess, and analyze, which often prevents real-time or resource-efficient deployment. This internship focuses on designing and validating AI-driven pipelines that reduce computational cost while preserving (or improving) analytical performance.</p>	
<p>The internship activities will cover the end-to-end workflow: (1) dataset selection and inspection (public HSI benchmarks and/or research datasets provided by the host), (2) preprocessing (radiometric normalization, denoising, bad band removal, dimensionality reduction), (3) model development for classification/segmentation/anomaly detection using efficient deep learning architectures, and (4) optimization for practical execution (latency, memory footprint, and throughput). Techniques may include spectral–spatial neural networks, lightweight CNNs/Transformers, autoencoders, pruning/quantization, knowledge distillation, and classical baselines such as PCA + SVM for comparison. Where applicable, the work will also address robust evaluation (cross-scene generalization, limited labels, class imbalance) and reproducibility (clean code, versioning, experiment tracking).</p>	
<p>Deliver a reproducible pipeline with documented preprocessing, training, and evaluation scripts, plus a final technical report and presentation</p>	
<p>Tools and technologies used during the internship will include Python, NumPy/SciPy, scikit-learn, PyTorch (or TensorFlow), common HSI libraries (e.g., Spectral Python), and experiment utilities (e.g., MLflow/Weights & Biases if available). Development will be done with Git for version control, and execution may leverage GPU acceleration when</p>	

available. The final output will include trained models, evaluation results, and an efficient inference-ready implementation.

<i>Duration (month – max 12)</i>	3-6
<i>Duration (hours)</i>	75
<i>Open positions</i>	2

Internship Skills

Technical requirements: Good Python programming skills

Basic machine learning knowledge (training/validation, metrics, overfitting)

Familiarity with deep learning frameworks (preferably PyTorch)

Ability to run experiments on Linux/Windows, manage environments (conda/pip)

Basic understanding of image processing; interest in high-dimensional data is a plus

<i>Other skills</i>	Scientific writing and documentation Team communication and regular progress reporting Problem-solving mindset; ability to read research papers and implement methods
---------------------	---